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The possibility is shown of applying the method of orthogonal polynomials to 
solve some integral equations of a special kind if the eigenfunctions of the inte- 

gral operator corresponding to the principal (singular) part of the kernel are un- 
known. Use of the classical scheme [l - 31 is impossible in this case. However, 

by using modified Chebyshev polynomials, an integral equation of the form 

k 
(0.1) 

is successfully reduced to an infinite algebraic system of the first kind conveni- 

ent for approximate solution. Here a, k are dimensionless parameters, C, is a 

continuous, even, and symmetric function in 5, z . Plane antisymmetric mixed 
problems of elasticity theory with two contact sections, odd in Z. reduce to equa- 

tions ofthe type( 0.1). The odd function f (z) describes the shape ofthe boundary layer 
onthe contact section k < 1 z 1 < 1 altered under the effect of stamps. 

Considered as an illustration is the problem of impressing two flat stamps into 

a strip. 

1, Representing the function f (z) = f,, (z) -+ p sgn 5, we seek the solution ~(5) 

(1.1) 

(1.9) 

Here ‘p. (E) , the solution of the integral equation (1.2). is given by formulas in [4] in 
whichitisassumedthat x/a = x, E/a = g, b/a= k, a = 1. Wehave 
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PO= !qo(x)dx = s ! fu (2) & \ g k g (x) = v/(1 - x2) (x2 - k2) 
ti ti 

Here K (k), E (k) are the complete elliptic integrals of the first and second kind, 

respectively. Then the function v1 (x) is found from (0.1) in which 

q(x) = Pagnz- &{90(5)G(5, x, A) dE (1.4) 
k 

must be taken in place of f (x) . The solution of the integral equation (0.1) has a sin- 
gularity of type g-’ is), and only one eigenfunction @a (x) = sgn 2 with weight 

[ng (x)1-’ and eigennumber K (k) has successfully been sought for the integral opera- 
tor in the left side of (0.1). Let us seek the solution ‘pi (x) in the form 

rp&r) =@(z) [Is Ig(41-l (1.5) 

Let us seek the function @ (x) , continuous with all derivatives for z E IrC, 11 as a 
series in modified Chebyshev polynomials of the first kind y’i* (x) which forms a sys- 

tem with weight lnlcg (z)]-~ orthonormalized in the segment [k, 11 : 

@ (x) = 5 UiTi" (x), 
i=o 

Ti* (X) = xT,i (~~) 
Let the operator L_ 

L_(cp) =$-Srp(S)+&j & 
k 

(1.6) 

(1.7) 

operate on the function T,* (E). Integrating, we obtain the equality (f ,, . C,.; are 
certain constants) n-1 

L_ (T,*) = C, sgn z + 2 CniTi* (z) (1.8) 
i=o 

We expand the function G (E, x, h) in a double series in the polynomials Ti* (x) 

G (E, 5, A) = 5 aijeijTi* (x) Tj* (E) (1.V 
i, i=o 

am=i, ai =- aoj = 2, aij = 4 

Substituting (1.9) into (1.4) and integrating, we obtain 

I# (5) = P wx + i PibiT,* (2) (PO = f 9 Pi = 1) (1.10) 

By using the property of orthogonality of the polynomials Ti* (2) and the change of 
variables 

z=JO -k’2sin2y, E= 1/l --kk”Lninatl, k’= r/l -ks 

we obtain an expression to determine the coefficients bi and eij (it is assumed that the 
coefficient fi is known) ?c 

(1.11) 
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$* (y) = J! (1/l - k12 sin2 y) - p 

Using the expansion (I. 61, we substitute (I. 5), (X,9), (1.10) into the integral equation 
for (pI (x); after performing all the necessary operations, equating the coefficients of 
Sgn 5 and the polynomials T,* (x) of the same uder, we obtain an infinite system of 
algebraic equations in the coefficients ai 

00 

2 CjUj = fi (Lrq 

J=O 

5 eijtZj + ri 5 CjitZj zz bi (To =: 2, ri = 1, i = 0,1,2, , . .) 
j=o j==i+l 

2, The coefficients c, and Cnir found for each n from (X,8), which is tedious 

enough, enter into the system [1,12), No formulas expressing C, and Cni directly in 

terms of k for arbitrary n have been found. 
We derive formulas expressing the interrelation between the coefficients CR and L’,i 

To this en& let us take the function f (zj for (1.2) as the right side of (1.8) and by using 

(1.3) we find the solution (&, (zJ of (1.2) for this case and we equate the expression 

] 5 i & (Z) cpo(x) to the polynomial T,* (5). We hence use the relationship (?‘sn are 

Chebyshev polynomials in the form of a sum [SJ) 

Using the change of variable I = p/‘ka + k’Q, after mani~~at~on we obtain 

CL31 
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a ms = 
(2m - 2s - I)!! 
(2rn - 2s + 2)! ! ’ 

b 
ms 

== (2m-229 + I)!! 
(XVI - 2s + 4)!! 

To simplify (2. I), we need the following equality : 

(2.2) 

which is known [5] for s = 0 and s = 1 , and is easily proved by induction for s > 

2. By using (2.2). the following equality (51 is proved : 

(2.3) 

We reverse the order of summation for Sri, Saj in (2. l), and after simple manipulation, 

we apply (2.3) to the inner sums. We obtain the equalities 
i--l 

SIj = 2 tas- 'I!' ui_j-*, 
i-j 

$=I P-t WI 
(2.4) 

Substituting (2.4) into (2.1). and again changing the order of summation in the remain- 
ing double sums, by using the equalities 

i-k-i 

i ) 2j + 1 ais = (_ l)*p+l ii +ls- ’ ) 
i-l 

2 (-lf4i”’ 
j=s 

we write the final form of the simplified equality (2.1) after regrouping terms: 

-t [iP (u - 1) + gg] C,” + 2 [2‘y2i + I) x (2.6) 
j=I 

pj (k) Ui + (-l)j2ik” 1 C,gj 

pj (k) = (4ij2 + i - 1) (j - i + 1)-1k’2 - 4j2i-l (j + i - I) k2 

Equating terms of identical power in u in (2.6). we obtain a system of n -f- 1 equations 
in the coefficients c, and cPki 
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(2n - 1) kt2c,,_I = 4 (2.7) 

n-1 

2k’“Cno + 8 2 (-4fj (k” - jV$) Cvzj = (-4)“-‘4n2 
j=l 

The coefficient matrix of the system (2.7) is a triangular one. The unknown Cni are 

easily found one after the other, starting with Clcrr_r. However, the system (2.7) can be 
simplified considerably. Multiplying both sides of (2.7) by 

we add the first ?Z - m + 1 equations. Then by using the identities 

o, djm ~ (-1)'(j -+ i - 3)! 

(i - m)! (i +- trc)! 
(2.8) 

(whose validity is proved by induction, as indeed was (2.5)), it can be shown that the 
coefficients of Clri for i > m + 2 and U 6 m <i II - 3, as well as the free terms 
for 0 < m <: B - .I are zero. Adding the first two equations of the system (2.7) 
successively (m = n - l), the three equations (m = FZ - 2) etc. , we obtain the 
following recursion formulas for C, and Cni (Clri =I () for i > ?z): 

(an - 1) Zir2Clln_r = 4, 415’~ i 2q,, (CnJ = kf2K (kf C,I (2.9) 

Qi (C,J = -c,, (i = !t), qi (C,i) = 0 (i=2,a,...,n-i) 

qol (C,J = [2E (k) - k’“K @)I C,, + k’” K (k) C,,l 

qi (C,J = (21’ - 1) k’YJrli__l + 4i (1 + k2) Cni i- (2i + 1) .li’%‘,i+l 

Using (2.9), terms containing Cj and Cii can generally be eliminated from equations 
of the system (1.12). Let us multiply the third equation of the system (1.12) by I’c’~K(&), 
the second by 215’ (k) = k’“K (k) and add them to the first equation multiplied by 4 ; 
then we multiply the fourth equation by 3Va, the third one by 4 (1 + k”) and we add 
them to the second equation multiplied by kfa , etc. consequently, taking account that 
C, ;;- fc (k) , the system (1.12) takes the canonical form 
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C&i = jj AijUj i_ Eli (i = 0, 1, 2,. . .) (2.10) 
f--o 

AOj = --401 (eij) [4K (k)kl, Bo = 1~01 (bi) + 4/3114K (k)bl 

Af, = - ‘/*Pi (eij), Bi = l/&i (bi) (i = 1, 2 _..) 

3, The approximate solution of the system (2.10) can be obtained by the method of 
reduction described in [33, say, which can also be given a foundation for the system 
mentioned. Jet us limit ourselves to terms of degree not above 2n + 1 in the integ- 

ral equation for rpr (t) by expanding the function into a series, Then, the degree of the 
variable .X in the left side of the equation will not begreater than 2n - 1 because of 

(1.8). Hence, it is necessary to impose the constraint i < n - 1 on i in the expan- 
sion (1.9). The polynomials in the expansions of the functions are odd, hence, the con- 

dition for i, j in (1.9) can be written as i f j < n - 1, which is equivalent to the 
first constraint. Then if it is considered that eij = (1 for i f j > n, we write the 

reduced system of equations (2.10) as 
n-i 

ai = 2 AjjUj + Bi (i = 0, 1, . . ., n) (3.1) 
j=o 

The coefficient matrix A ij of the system (3.1) is almost triangular. 
The integral characterisitics of the solution (pI (x) are of interest. The magnitude of 

the force P, is determined from the formulas 

(3.2) 

So = K (k’), S, =[[2E (k’) - II f k2) K (k’)] (k’)-2 

qj (S,) =o (f-1,2,...) 

The validity of the recursion formula in (3.2) is evident. We have a simple expression 

for the moment +&I, because of (1.5). (1.6). 
There remains to note that if the function f (x) in( 0,l)is representable by a rapidly con- 

vergingseriesoftheform(l.lO)or its segment for L E [k, 11 , then it IS expedient to 
seek the solution cp (2) not in the form (1.1) but using directly the scheme of the method 

of the polynomials Ti* (x). 
As an illustration, let us examine the problem of the contact of two flat stamps (f (t)= 

sgn 4 with an elastic strip on a rigid base: hinge fixing holds on the boundaries of the 

stamp-strip base. This problem has no physical meaning, but is an important component 
part of the problems in which f (x) = fl (r) + b :g 5 IL I and the function II (r) is even, 

The coefficients ei; of the series (1.9) were computed on an electronic computer by 



308 V.A.Kucheror 

successive approximations according to (I. 11) by using the Gauss-Hermite quadrature 
formula and values of the f~cr~on I: (1) tabulated in [63 which is a composite part of 
c’ ct. 5. A). Because of the properties of the function G (5, 5, A) , the successive appro- 
ximations must converge to the exact value of the integral, Values of e+j alO* are pre- 
sented in Table 1 for h =I: 2 and k = 0.1, k = 0.5, k = U.Y. 

The approximate solutions 9 (sj ot the integral equation (0.1) are finally represented 
as 

For the case h = 2 

Table 1 

ii / xfkf / +(i+k!‘) / x(i) / 1’ ( ~4 

0.1 0.6414 1 ‘ 5’:‘s * , 0 * 7876 9.5”O 2.127 
0.6416 1.535 0.7784 2.514 1.123 

0.5 0.7094 1.788 0.82iO 1,418 1.046 
il. 7ocJs 1.786 0.8110 1.414 1.042 

0.9 1 .085 5.064 1.121 0.7954 0.7555 
1.083 I 5.1138 I.111 0.7912 0.7514 

Presented in Table 2 are some characterisitics of the solution g, (I) for ?L = 2, where 

the following notation has been ~ntr~~~ed 

X(~)~~irn~(~) l/z.J for z-;; 

X(i)=limcp(a)l/l for :c-, 1 

Values obtained by the “method of large X It in [a] for the corresponding quantities 

are placed in the lower rows for comparison. The discrepancy between the values does 
not exceed 1.5% for all i; . 

As the parameter a diminishes, especially for k close to zero, the number of equa- 
tions in the system (3.1) must be increased to maintain given accuracy of the solution 

cp (3) * Computations have shown that the system method is effective for h,> “IA in 
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this case for all 0 < k < 1; the number ,~__..__~~~~~ _~__ 
of equations required in the system (3.1) 

hence does not exceed seven to obtain 

a solution cp (I) to 2% accuracy. 
The boundaries of applicability of 

the method of large Ir. (h > 2), the sys- 

tern method (h > l/q) are shown in 
Fig. 1 ; domains in which the same num- 

ber of equations of the system (3.1) is 

needed to obtain a solution cp (2) to no 
less accuracy than 2% are separated by 
curved lines, where each curve is marked 
with the number of equations. 

It should be noted that the solution 

of (0.1) found in closed form by using 
a special approximation of the kernel 

[4] differs from that obtained by the sys- 
tern method by not more than 5% for 

O.5 

Fig. 1 

I 
the case considered with A. > l/r . 

The author is grateful to V. M. Alek- 
sandrov for monitoring the research and 
for useful discussions. 
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