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The possibility is shown of applying the method of orthogonal polynomials to
solve some .integral equations of a special kind if the eigenfunctions of the inte-
gral operator corresponding to the principal (singular) part of the kernel are un-
known, Use of the classical scheme [1 — 3] is impossible in this case, However,
by using modified Chebyshev polynomials, an integral equation of the form
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is successfully reduced to an infinite algebraic system of the first kind conveni-
ent for approximate solution, Here A, £ are dimensionless parameters, Gy is a
continuous, even, and symmetric function in §, z . Plane antisymmetric mixed
problems of elasticity theory with two contact sections, odd in z. reduce to equa-
tions of the type(0.1). The odd function f (x) describes the shape of the boundary layer
onthe contactsection £ <{ |z | < 1 altered under the effect of stamps,

Considered as an illustration is the problem of impressing two flat stamps into
a strip,

1, Representing the function f (x) = f, () + P sgn x, we seek the solution ¢ (&)

of (0. 1) as ¢ (8) = @0 (5) + o (B) w1y
Sq:o (&) In lzi ;;idé = o) (halTal b (0.9

Iy
Here @, (E), the solurion of the integral equation (1,2), is given by formulas in [4] in
which it is assumed that z /a = 2, §/a = §, b/a =k, a = 1. We have
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Here K (k), E (k) are the complete elliptic integrals of the first and second kind,

respectively, Then the function ¢, (z) is found from (0,1) in which
1

v(@) = Bsgna— —\ @@ CE v M (1.4)
k

must be taken in place of f () . The solution of the integral equation (0,1) has a sin-
gularity of type g-! {z), and only one eigenfunction @, (z) = sgn z with weight
[ng (x)}-* and eigennumber K (k) has successfully been sought for the integral opera-
tor in the left side of (0.1). Let us seek the solution ¢, (x) in the form

¢ 2) = O () [z | g (@) (1.5)

Let us seek the function O (z) , continuous with all derivatives for x & [k, 1] asa
series in modified Chebyshev polynomials of the first kind 7';* (x) which forms a sys-
tem with weight [nag (z)l-! orthonormalized in the segment [k, 1] :

Q@) = ) al*@), Ti*@) = 2Ty <]/?;_ETA> (1.6)
i=0
Let the operator L _ .

1 E4-x
L. ((P)—TS (&) In I z| Eg® (1.7

operate on the function 7',* (E). Integrating, we obtain the equality (.. C,; are
certain constants) n—1
L (T*)=Cnsgnz+ D) Cul'* () (1.8)
i=0
We expand the function G (&, z, A) in a double series in the polynomials T* ()

G eh= 3 apdF @I (1.9)
i, J=0
oo = 1, %y == Ooi = 2, ai]. =4

Substituting (1, 9) into (1,4) and integrating, we obtain

v =Bsgnz+ 3 BoT*@) [(Po= 5. B=1) (1.10)
i=0
By using the property of orthogonality of the polynomials 7';* (i) and the change of
iabl —_— —_— -
variables V1—k’2sin2y, E=V1—ktsinty, K=V1I—F

we obtain an expression to determine the coefficients b; and e;; (it is assumed that the
coefficient P is known) .
b — _2_5 P* (y) cos 2iy
t L y————————
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n
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Vv () = P(V 1T —F7sin’y) — B
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Using the expansion (1, 8), we substitute (1, 5), (1. 9}, (1. 10) into the integral equation
for ¢; (x); after performing all the necessary operations, equating the coefficients of
sgn r and the polynomials 7,;* (z) of the same order, we obtain an infinite system of
algebraic equations in the coefficients a;

2 C,'aj = (1,12)
I=0

Mejai+Ti X Cigy=b (o=2,1,=1, i=0,1,2..)

J=0 F=i41

2, The coefficients Cpand C,;, found for each n from (1, 8), which is tedious
enough, enter into the system (1,12), No formulas expressing C, and C,,; directly in
terms of k for arbitrary n have been found,

We derive formulas expressing the interrelation between the coefficients €, and (;
To this end, let us take the function f (z) for (1,2) as the right side of (1. 8) and by using
(1.3) we find the solution @, (z) of (1, 2) for this case and we equate the expression
|z | g (2) @o(z) to the polynomial T,* (x). We hence use the relationship (T';, are
Chebyshev polynomials in the form of a sum [5])
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Using the change of variable = %% - k 2, after manipulation we obtain

(2.1)
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To simplify (2.1), we need the following equality:

. n o—i, s=0
2( 1) ms( ={ 0 s>1, n>s-1 (2,2)

ma=1
which is known [5] for § = 0 and s = 1, and is easily proved by induction for s >
2, By using (2,2), the following equality [5] is proved:

2_(1)(m%4)(m)=(—”9 @

We reverse the order of summation for Sy;, Sy; in(2,1), and after simple manipulation,
we apply (2, 3) to the inner sums, We obtain the equalities

@s—1n @D
Z(zs-;-z)u W 2@3_{_4,” i (2.4

Substituting (2,4} into (2. 1), and again changing the order of summation in the remain-
ing double sums, by using the equalities

N [P FS—2Y 2 — 1 %5
B e (5 ) @
fome, . . ‘o
N g (PHTN, sgrey (LHS—2
3 (14 (", )= v (50T
-1 N i+s—1
jsit1 o o 4\SO28H1
jé(—m (21.“) aj, = (—1)"2 ( o )

we write the final form of the simplified equality (2.1) after regrouping terms:
n—i
E(k 10
Ton (Vi) = i+ [P — 1) + 28] G+ 32 [27 @+ ) 2e6)
=1

—1) 4 g — 2 . i -
et — 2 CO Gyt + (12782 €

ps () = (Aif® + i — 1) (f — i + -2 — 421 (] + i — 1)

Equating terms of identical power in u in (2, 6), we obtain a system of n + 1 equations

in the coefficiems C, and C;
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The coefficient matrix of the system (2,7) is a triangular one, The unknown C,; are
easily found one after the other, starting with (,,,,.,. However, the systern (2, 7) can be
simplified considerably, Multiplying both sides of (2. 7) by

(i)

we add the first » — m + 1 equations, Then by using the identities
i d i—1

. d. 1y ‘
jm . im I G Y R s 2,8
i:zm (1‘ — i) B j:Em (I — i 1)‘ 0, d}m - (i — m)} (i + ) (@ )

(O <Km <y —4d)

= (=1 [r+i 28
ZrHJ( 2i i~m>20 O<Sm<r—1)

i—=m

(whose validity is proved by induction, as indeed was (2 5)), it can be shown that the
coefficients of (,; for i >m + 2 and 0 < m < n — 3, as well as the free terms
for 0 <Cm < n — 1 are zero, Adding the first two equations of the system (2, 7)
successively (m = n — 1), the three equations {(m = n — 2) etc,, we obtain the
following recursion formulas for €, and C,; (C,;, = 0 for i > n):

@n — VD) E2C,q =4,  4C, + 2g0 (Cpy) = KK (k) Coy (2.9)
g (Cri) = —Cro (i =1), q:(Crs) =0  (¢=23..,n—1)

Goy (Cni) = [2E (k) — k2K (k)] Cpo + k" K (k) Ca

g (Cop) = (21 — 1) K'2Coyy + 40 (1 + K2 Cpy + (20 + 1) K'2C4

Using (2, 9), terms containing C; and (,"?-i can generally be eliminated from equations
of the system (1,12), Let us multiply the third equation of the system (1.12) by k"2K (%),
the second by 2E (k) = k'*K (k) and add them to the first equation multiplied By 4;
then we multiply the fourth equation by 3’2, the third one by 4 (1 -+ %%) and we add
them to the second equation multiplied by k'? | etc, Consequently, taking account that
C, == K (k) , the system (1, 12) takes the canonical form
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a; = Z Aga; -+ B; (i=01,2..) (2.10)
J==0

Ao = —qu () 4K ()=, B, = gy, (8;) + 4BII4K (k)]-1

Ay = —gi(es), By =14gq: (b)) (=12.)

3, The approximate solution of the system (2,10) can be obtained by the method of
reduction described in [ 3], say, which can also be given a foundation for the system
mentioned, Let us limit ourselves to terms of degree not above 2n + 1 inthe integ=-
ral equation for @, () by expanding the function into a series, Then, the degree of the
variable x in the left side of the equation will not be greater than 2n — 1 because of
(1.8). Hence, it is necessary to impose the constraint { < 7 — 1 on i in the expan~
sion (1, 9), The polynomials in the expansions of the functions are odd, hence, the con-
dition for i, j in(1,9) can be written as i 4 j <{ n ~ 1, which is equivalent to the
first constraint, Then if it is considered that ¢;; = 0 for { 4 j > n, we write the
reduced system of equations (2,10) as

n—i

a = X Aya;+ B (=0,1,....n) (3.1)
=0

The coefficient matrix A;; of the system (83, 1) is almost triangular,
The integral characterisitics of the solution @, () are of interest, The magnitude of
the force P, is determined from the formulas
n

P1=§<P1($)d$= 2 @S, S Vi

P i=0

cos 2iz dx (3.2)

1 —k?sin? z

So= K (K), S,=|2E () — (1 + &%) K (k)] (k')-?
g (S)y=0 (=12..)

The validity of the recursion formula in (3, 2) is evident, We have a simple expression
1
M, = S(pl (2) 2dz = -,
k
for the moment AJ, because of (1, 5), (1, 6).

There remains to note that if the function f (r)in(0,1)is representable by a rapidly cone
verging series of the form(1,10) or its segment for x < [k, 1], then it 1s expedient to
seek the solution ¢ () not in the form (1, 1) but using directly the scheme of the method
of the polynomials 7';* (x).

As an illustration, let us examine the problem of the contact of two flat stamps {f (z) =
sgn z) with an elastic strip on a rigid base: hinge fixing holds on the boundaries of the
stamp=strip base, This problem has no physical meaning, but is an important component
part of the problems in which f (z) = f; (%) -+ [ sgn r and the function f, () is even,

The coefficients ¢;; of the series (1, 9) were computed on an electronic computer by
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successive approximations according to {1,11) by using the Gauss~-Hermite quadrature
formula and values of the function F (?) tabulated in [6] which is a composite part of
G {&. . 2). Because of the properties of the function ¢ (g, z, A) , the successive appro-
ximations must converge to the exact value of the integral, Values of ¢yj -10* are pre~
sented in Table 1 for A = 2 and k = 0.1, k == 0.5, &k = 0.9,

The approximate solutions ¢ (z} ot the integral equation (0,1) are finally represented
as

T
sgn o o
) P, (), Py, (0) = 2 da®
=

v @)=

For the case A = 2

Py, =0.636 -+ 0.2052% — 0.06502* - 0.0079225, /s — 0.1
Py, == 0.569 4- 0.1942> — 0.05920% + 0.00512¢%, 4 = 0.5

Py, = 0.383 -+ 013622 — 0.031029, k=0.9
Table 1
ke i) <UD i =1 ’ if=e 11 } i == 20 I i =i ; P32 ’ if = 30
i 207 130.2  |—19.147 —32.682 Q.006906 (. 0N6650 (.06120
0.5 | —2244 093.53 | —9.944 | —1.408 0.04i116 0.0010 0.01580
0.9 ] —2110 24.00 | —0.5120] —0.06120
Table 2
i % (k) e (1+ kD) x () P M
0.1 0.6414 1.533 0,7876 2.520 1.127
0.6416 1.535 0.7784 2.514 1.123
.5 0.7004 1,788 0.8210 1.418 1.046
0.7098 1.786 0.8110 1.414 1.042
0.9 1.085 5.064 1.121 0.7954 (.7555
1.083 5.038 1.141 0.7912 0.7514

Presented in Table 2 are some characterisitics of the solution ¢ (z} for A = 2, where
the following notation has been introduced

% (k) =lim g (=) V:z;“-——!s'-* for -1
Y =lime@)VT— 2 for x— |

Values obtained by the "method of large 1 " in [4] for the corresponding quantities
are placed in the lower rows for comparison, The discrepancy between the values does
not exceed 1,56% forall r.

As the parameter 4 diminishes, especially for & close to zero, the number of equa-
tions in the system (3, 1) must be increased to maintain given accuracy of the solution
¢ (z} » Computations have shown that the system method is effective for A >4 in
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this case for all 0 < & < 1; the number
of equations required in the system (3,1)
hence does not exceed seven to obtain
a solution ¢ (z) to 2% accuracy,

The boundaries of applicability of
the method of large A (A > 2), the sys=
tem method (A > /,) are shown in
Fig, 1; domains in which the same num-
ber of equations of the system (3,1) is
needed to obtain a solution ¢ (z) to no
less accuracy than 2% are separated by
curved lines, where each curve is marked
with the number of equations,

It should be noted that the solution
of (0,1) found in closed form by using
a special approximation of the kernel
[4] differs from that obtained by the sys=-
tem method by not more than 5% for
the case considered with A >1/4,

~a
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